63 research outputs found

    Computing functions on Jacobians and their quotients

    Get PDF
    We show how to efficiently compute functions on jacobian varieties and their quotients. We deduce a quasi-optimal algorithm to compute (l,l)(l,l) isogenies between jacobians of genus two curves

    Galois invariant smoothness basis

    Full text link
    This text answers a question raised by Joux and the second author about the computation of discrete logarithms in the multiplicative group of finite fields. Given a finite residue field \bK, one looks for a smoothness basis for \bK^* that is left invariant by automorphisms of \bK. For a broad class of finite fields, we manage to construct models that allow such a smoothness basis. This work aims at accelerating discrete logarithm computations in such fields. We treat the cases of codimension one (the linear sieve) and codimension two (the function field sieve)

    The geometry of some parameterizations and encodings

    Get PDF
    We explore parameterizations by radicals of low genera algebraic curves. We prove that for qq a prime power that is large enough and prime to 66, a fixed positive proportion of all genus 2 curves over the field with qq elements can be parameterized by 33-radicals. This results in the existence of a deterministic encoding into these curves when qq is congruent to 22 modulo 33. We extend this construction to parameterizations by â„“\ell-radicals for small odd integers â„“\ell, and make it explicit for â„“=5\ell=5

    Approximate computations with modular curves

    Full text link
    This article gives an introduction for mathematicians interested in numerical computations in algebraic geometry and number theory to some recent progress in algorithmic number theory, emphasising the key role of approximate computations with modular curves and their Jacobians. These approximations are done in polynomial time in the dimension and the required number of significant digits. We explain the main ideas of how the approximations are done, illustrating them with examples, and we sketch some applications in number theory

    Explicit Riemann-Roch spaces in the Hilbert class field

    Full text link
    Let K\mathbf K be a finite field, XX and YY two curves over K\mathbf K, and Y→XY\rightarrow X an unramified abelian cover with Galois group GG. Let DD be a divisor on XX and EE its pullback on YY. Under mild conditions the linear space associated with EE is a free K[G]{\mathbf K}[G]-module. We study the algorithmic aspects and applications of these modules
    • …
    corecore